Affiliation:
1. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
2. Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island
3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Abstract
AbstractThe spatial scale of submesoscales is an important parameter for studies of submesoscale dynamics and multiscale interactions. The horizontal spatial scales of baroclinic, geostrophic-branch mixed layer instabilities (MLI) are investigated globally (without the equatorial or Arctic oceans) based on observations and simulations in the surface and bottom mixed layers away from significant topography. Three high-vertical-resolution boundary layer schemes driven with profiles from a MITgcm global submesoscale-permitting model improve robustness. The fastest-growing MLI wavelength decreases toward the poles. The zonal median surface MLI wavelength is 51–2.9 km when estimated from the observations and from 32, 25, and 27 km to 2.5, 1.2, and 1.1 km under the K-profile parameterization (KPP), Mellor–Yamada (MY), and κ–ε schemes, respectively. The surface MLI wavelength has a strong seasonality with a median value 1.6 times smaller in summer (10 km) than winter (16 km) globally from the observations. The median bottom MLI wavelengths estimated from simulations are 2.1, 1.4, and 0.41 km globally under the KPP, MY, and κ–ε schemes, respectively, with little seasonality. The estimated required ocean model grid spacings to resolve wintertime surface mixed layer eddies are 1.9 km (50% of regions resolved) and 0.92 km (90%) globally. To resolve summertime eddies or MLI seasonality requires grids finer than 1.3 km (50%) and 0.55 km (90%). To resolve bottom mixed layer eddies, grids finer than 257, 178, and 51 m (50%) and 107, 87, and 17 m (90%) are estimated under the KPP, MY, and κ–ε schemes.
Funder
National Key Research Program of China
National Natural Science Foundation of China
Directorate for Geosciences
Office of Naval Research Global
China Scholarship Council
Publisher
American Meteorological Society
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献