Deep Eastern Boundary Currents: Idealized Models and Dynamics

Author:

Yang Xiaoting1,Tziperman Eli12,Speer Kevin34

Affiliation:

1. a Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

2. b School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

3. c Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida

4. d Department of Scientific Computing, Florida State University, Tallahassee, Florida

Abstract

AbstractConcentrated poleward flows along eastern boundaries between 2- and 4-km depth in the southeast Pacific, Atlantic, and Indian Oceans have been observed, and appear in data assimilation products and regional model simulations at sufficiently high horizontal resolution, but their dynamics are still not well understood. We study the local dynamics of these deep eastern boundary currents (DEBCs) using idealized GCM simulations, and we use a conceptual vorticity model for the DEBCs to gain additional insights into the dynamics. Over most of the zonal width of the DEBCs, the vorticity balance is between meridional advection of planetary vorticity and vortex stretching, which is an interior-like vorticity balance. Over a thinner layer very close to the eastern boundary, a balance between vorticity tendencies due to friction and stretching that rapidly decay away from the boundary is found. Over the part of the DEBC that is governed by an interior-like vorticity balance, vertical stretching is driven by both the topography and temperature diffusion, while in the thinner boundary layer, it is driven instead by parameterized horizontal temperature mixing. The topographic driving acts via a cross-isobath flow that leads to stretching and thus to vorticity forcing for the concentrated DEBCs.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3