On the Estimation of Deep Atlantic Ventilation from Fossil Radiocarbon Records. Part II. (In)consistency with Modern Estimates

Author:

Marchal Olivier1,Zhao Ning2

Affiliation:

1. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, U.S.A.

2. State Key Laboratory of Estuarine and Coastal Research and School of Marine Sciences, East China Normal University, Shanghai, China, Max Planck Institute for Chemistry, Mainz, Germany

Abstract

AbstractMeasurements of radiocarbon concentration (Δ14C) in fossil biogenic carbonates have been interpreted as reecting a reduced ventilation of the deep Atlantic during the last ice age. Here we evaluate the (in)consistency of an updated compilation of fossil Δ14C data for the last deglaciation with the abyssal circulation in the modern Atlantic. A 14C transport equation, in which the mean velocity field is a modern field estimate and turbulent flux divergence is treated as a random fluctuation, is fitted to deglacial Δ14C records by using recursive weighted least-squares. This approach allows us to interpret the records in terms of deviations from the modern flow with due regard for uncertainties in the fossil data, the 14C transport equation, and its boundary conditions.We find that the majority of fit residuals could be explained by uncertainties in fossil Δ14C data, for two distinct estimates of the modern flow and of the error variance in the boundary conditions. Thus, most, not all, deglacial data appear consistent with present-day ventilation rates. From 20 to 32% of the residuals exceed in magnitude the published errors in the fossil data by a factor of two. Residuals below 4000 m in the western North Atlantic are all negative, suggesting that deglacial Δ14C values from this region are too low to be explained by modern ventilation. Whilst deep water ventilation appeared different from today at some locations, a larger database and a better understanding of error (co)variances are needed to make reliable paleoceanographic inferences from fossil Δ14C records.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3