A study of intermediate water circulation in the Strait of Georgia using tracer-based, Eulerian, and Lagrangian methods

Author:

Stevens S. W.1,Pawlowicz R.1,Allen S. E.1

Affiliation:

1. Department of Earth and Ocean Sciences, University of British Columbia, 2020–2207 Main Mall, Vancouver BC V6T 1Z4

Abstract

AbstractThe intermediate circulation of the Strait of Georgia, British Columbia, Canada, plays a key role in dispersing contaminants throughout the Salish Sea, yet little is known about its dynamics. Here, we use hydrographic observations and hindcast fields from a regional 3D model to approach the intermediate circulation from three perspectives. Firstly, we derive and model a “seasonality” tracer from temperature observations to age the water, estimate mixing, and infer circulation. Secondly, we analyze modeled velocity fields to create mean current maps and examine the advective and diffusive components of the mean flow field. Lastly, we calculate Lagrangian trajectories to derive Transit Time Distributions and Lagrangian statistics. In combination, these analyses provide an overview of the mean intermediate circulation that can be summarized as follows: subducting water in Haro Strait ventilates the intermediate water primarily via an up-strait boundary current that flows along the eastern shores of the southernmost basin in 1–2 months. This inflowing water is either incorporated into the interior of the basin, recirculated southwards, or transported into the northernmost basin, mixing steadily with adjacent water masses during its transit. A second, shallower ventilating jet emanates southwards from Discovery Passage, locally modifying the Haro Strait inflow signal. Outside of these well-defined advective features, diffusive transport dominates in the majority of the region. The intermediate renewal signal fully ventilates the region in 100–140 days, which serves as a benchmark for contaminant dispersal timescale estimates.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3