Submesoscale Instability in the Straits of Florida

Author:

Chérubin Laurent M.1,Le Paih Nicolas2,Carton Xavier3

Affiliation:

1. a Florida Atlantic University, Harbor Branch oceanographic Institute, Fort Pierce, Florida,

2. b Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

3. c IUEM/LOPS, UFR Sciences/ Dept. Physique, Plouzané, France

Abstract

AbstractThe Florida Current (FC) flows in the Straits of Florida (SoF) and connects the Loop Current in the Gulf of Mexico to the Gulf Stream (GS) in the Western Atlantic Ocean. Its journey through the SoF is at time characterized by the formation and presence of mesoscale but mostly submesoscale frontal eddies on the cyclonic side of the current. The formation of those frontal eddies was investigated in a very high resolution two-way nested simulation using the Regional Oceanic Modeling System (ROMS). Frontal eddies were either locally formed or originated from outside the SoF. The northern front of the incoming eddies was susceptible to superinertial shear instability over the shelf slope when the eddies were pushed up against the slope by the FC. Otherwise, incoming eddies could be advected relatively unaffected by the current, when in the southern part of the straits. In absence of incoming eddies, submesoscale eddies were locally formed by the roll-up of superinertial barotropically unstable vorticity filaments when the FC was pushed up against the shelf slope. The vorticity filaments were intensified by the friction-induced bottom layer vorticity flux as previously demonstrated by Gula et al. (2015b) in the GS. When the FC retreated further south, negative vorticity West Florida Shelf waters overflowed into the SOF and led to the formation of submesocale eddies by baroclinic instability. The instability regimes, hence, the submesoscale frontal eddies formation appear to be controlled by the lateral ‘sloshing’ of the FC in the SoF.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3