Tactical Decision-Making Support Information for Aircraft Lightning Avoidance: Feasibility Study in Area of Winter Lightning

Author:

Yoshikawa Eiichi1,Ushio Tomoo2

Affiliation:

1. Japan Aerospace Exploration Agency, Mitaka, Tokyo, Japan

2. Tokyo Metropolitan University, Hino, Tokyo, Japan

Abstract

AbstractDid you know that aircraft can cause lightning? Researchers began investigating aircraft-triggered lightning after several cases were observed of aircraft receiving lightning strikes from lightning-inactive clouds. The phenomenon of aircraft-triggered lightning was subsequently confirmed by a UHF radar, and today, it is known that most aircraft lightning strikes are aircraft triggered. However, aviation weather support for aircraft lightning avoidance has not been well developed. This is probably because aircraft lightning strikes have been somewhat avoided by using other information such as thunderstorm nowcasting, and have hardly ever caused serious accidents. In fact, today’s aircraft are designed, manufactured, and certified so as not to be seriously affected by lightning. In actual aircraft operations, however, lightning strikes can still cause minor damage to an aircraft’s body and instruments and result in time and expense being incurred by airlines to check for and repair any damage. Moreover, such checks and repairs can sometimes lead to the delay or cancellation of following services. Aircraft lightning strike is therefore recognized as an important issue in aviation weather. The Japan Aerospace Exploration Agency and Tokyo Metropolitan University carried out a feasibility study on providing tactical support information for aircraft lightning avoidance. In this study, weather and flight data were collected from actual cases of aircraft lightning strikes, and their analysis yielded information on trends regarding the relationship between aircraft lightning strikes and weather conditions. A prototype tactical support system was then developed based on the analyzed trends, and its evaluation showed that it could be used to avoid potentially 60%–80% of current aircraft lightning strikes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference20 articles.

1. The CASA integrated project 1 networked radar system;Junyent;J. Atmos. Oceanic Technol.,2010

2. Kaminari nowcast ni okeru kaminari no kaiseki: Yosokugijutu to riyouhouhou (Lightning analysis in lightning nowcast: Forecast technology and utilization);Kasahara;Wea. Serv. Bull.,2011

3. A physical model of lightning initiation on aircraft in thunderstorms;Mazur;J. Geophys. Res.,1989

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3