Observing and Predicting the 2015/16 El Niño

Author:

L’Heureux Michelle L.1,Takahashi Ken2,Watkins Andrew B.3,Barnston Anthony G.4,Becker Emily J.5,Di Liberto Tom E.5,Gamble Felicity3,Gottschalck Jon1,Halpert Michael S.1,Huang Boyin6,Mosquera-Vásquez Kobi2,Wittenberg Andrew T.7

Affiliation:

1. NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

2. Instituto Geofísico del Perú, Lima, Peru

3. Australian Bureau of Meteorology, Melbourne, Victoria, Australia

4. International Research Institute for Climate and Society, Columbia University, New York, New York

5. NOAA/NWS/NCEP/Climate Prediction Center/Innovim, College Park, Maryland

6. NOAA/National Centers for Environmental Information, Asheville, North Carolina

7. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

Abstract The El Niño of 2015/16 was among the strongest El Niño events observed since 1950 and took place almost two decades after the previous major event in 1997/98. Here, perspectives of the event are shared by scientists from three national meteorological or climate services that issue regular operational updates on the status and prediction of El Niño–Southern Oscillation (ENSO). Public advisories on the unfolding El Niño were issued in the first half of 2015. This was followed by significant growth in sea surface temperature (SST) anomalies, a peak during November 2015–January 2016, subsequent decay, and its demise during May 2016. The life cycle and magnitude of the 2015/16 El Niño was well predicted by most models used by national meteorological services, in contrast to the generally overexuberant model predictions made the previous year. The evolution of multiple atmospheric and oceanic measures demonstrates the rich complexity of ENSO, as a coupled ocean–atmosphere phenomenon with pronounced global impacts. While some aspects of the 2015/16 El Niño rivaled the events of 1982/83 and 1997/98, we show that it also differed in unique and important ways, with implications for the study and evaluation of past and future ENSO events. Unlike previous major El Niños, remarkably above-average SST anomalies occurred in the western and central equatorial Pacific but were milder near the coast of South America. While operational ENSO systems have progressed markedly over the past several decades, the 2015/16 El Niño highlights several challenges that will continue to test both the research and operational forecast communities.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 276 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3