PM2.5 Pollution in China and How It Has Been Exacerbated by Terrain and Meteorological Conditions

Author:

Wang Xiaoyan1,Dickinson Robert E.2,Su Liangyuan3,Zhou Chunlüe3,Wang Kaicun3

Affiliation:

1. Institute of Atmospheric Science, Fudan University, Shanghai, and College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

2. Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

3. College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Abstract

Abstract The recent severe and frequent PM2.5 (i.e., fine particles smaller than 2.5 µm) pollution in China has aroused unprecedented public concern. The first two years of PM2.5 measurements in China are reported and compared with those of Europe and the United States. The average PM2.5 concentration in China is approximately 5 times that over Europe and America. The contribution of atmospheric dispersion to such air quality is evaluated in this study. Air stagnation or its absence is a good indicator of the atmosphere’s capability to disperse its pollutants, but the NOAA definition of an air stagnation event is found to not be applicable to China since it depends on vertical mixing that is weakened in China by the effects of terrain. To address this deficiency, a new threshold for air stagnation events is proposed that depends on the 10-m wind speed, boundary layer height, and occurrence of precipitation. This newly defined air stagnation closely tracks the day-to-day variation of PM2.5 concentrations. Such events are more frequent over China than over Europe and the United States during autumn and winter, especially over the Sichuan basin and Jing-Jin-Ji region of China. If China had the same frequency of air stagnation as the United States or Europe, 67% and 82% of its stations would improve their current air quality during autumn and winter (e.g., an average of 12% decrease in PM2.5 concentrations for the Jing-Jin-Ji region in wintertime). Its severe pollution and frequent air stagnation conditions make controls on emission less effective in China than elsewhere.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3