Potential of Pan-European Seasonal Hydrometeorological Drought Forecasts Obtained from a Multihazard Early Warning System

Author:

Sutanto Samuel Jonson1,Van Lanen Henny A. J.1,Wetterhall Fredrik2,Llort Xavier3

Affiliation:

1. Hydrology and Quantitative Water Management Group, Wageningen University and Research, Wageningen, Netherlands

2. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

3. Hydrometeorological Innovative Solutions, Barcelona, Spain

Abstract

AbstractDrought early warning systems (DEWS) have been developed in several countries in response to high socioeconomic losses caused by droughts. In Europe, the European Drought Observatory (EDO) monitors the ongoing drought and forecasts soil moisture anomalies up to 7 days ahead and meteorological drought up to 3 months ahead. However, end users managing water resources often require hydrological drought warning several months in advance. To answer this challenge, a seasonal pan-European DEWS has been developed and has been running in a preoperational mode since mid-2018 under the EU-funded Enhancing Emergency Management and Response to Extreme Weather and Climate Events (ANYWHERE) project. The ANYWHERE DEWS (AD-EWS) is different than other operational DEWS in the sense that the AD-EWS provides a wide range of seasonal hydrometeorological drought forecasting products in addition to meteorological drought, that is, a broad suite of drought indices that covers all water cycle components (drought in precipitation, soil moisture, runoff, discharge, and groundwater). The ability of the AD-EWS to provide seasonal drought predictions in high spatial resolution (5 km × 5 km) and its diverse products mark the AD-EWS as a preoperational drought forecasting system that can serve a broad range of different users’ needs in Europe. This paper introduces the AD-EWS and shows some examples of different drought forecasting products, the drought forecast score, and some examples of a user-driven assessment of forecast trust levels.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference91 articles.

1. Future low flows and hydrological drought: How certain are these for Europe?;Alderlieste;IAHS Publ.,2014

2. Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events;Alfieri;Adv. Geosci.,2011

3. Drought: Research and Science-Policy Interfacing

4. Skilful seasonal forecasts of streamflow over Europe? Hydrol;Arnal;Earth Syst. Sci.,2018

5. EFAS upgrade for the extended model domain;Arnal;EU Joint Research Center Tech. Doc. EUR 29323 EN,2019

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3