Recent Advances in the Understanding of Near-Cloud Turbulence

Author:

Lane Todd P.1,Sharman Robert D.2,Trier Stanley B.2,Fovell Robert G.3,Williams John K.2

Affiliation:

1. School of Earth Sciences and ARC Centre of Excellence for Climate System Science, The University of Melbourne, Melbourne, Australia

2. National Center for Atmospheric Research, Boulder, Colorado

3. University of California, Los Angeles, Los Angeles, California

Abstract

Anyone who has flown in a commercial aircraft is familiar with turbulence. Unexpected encounters with turbulence pose a safety risk to airline passengers and crew, can occasionally damage aircraft, and indirectly increase the cost of air travel. Deep convective clouds are one of the most important sources of turbulence. Cloud-induced turbulence can occur both within clouds and in the surrounding clear air. Turbulence associated with but outside of clouds is of particular concern because it is more difficult to discern using standard hazard identification technologies (e.g., satellite and radar) and thus is often the source of unexpected turbulence encounters. Although operational guidelines for avoiding near-cloud turbulence exist, they are in many ways inadequate because they were developed before the governing dynamical processes were understood. Recently, there have been significant advances in the understanding of the dynamics of near-cloud turbulence. Using examples, this article demonstrates how these advances have stemmed from improved turbulence observing and reporting systems, the establishment of archives of turbulence encounters, detailed case studies, and high-resolution numerical simulations. Some of the important phenomena that have recently been identified as contributing to near-cloud turbulence include atmospheric wave breaking, unstable upper-level thunderstorm outflows, shearing instabilities, and cirrus cloud bands. The consequences of these phenomena for developing new en route turbulence avoidance guidelines and forecasting methods are discussed, along with outstanding research questions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference52 articles.

1. An hourly assimilation–forecast cycle: The RUC;Benjamin;Mon. Wea. Rev.,2004

2. Turbulence in clear air near thunderstorms;Burns,1966

3. Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements;Cornman;J. Aircraft,1995

4. An update on the FAA Aviation Weather Research Program's in situ turbulence measurement and report system;Cornman;Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology,2004

5. On the effects of moisture on the Brunt-Väisälä frequency;Durran;J. Atmos. Sci.,1982

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3