Global View Of Real-Time Trmm Multisatellite Precipitation Analysis: Implications For Its Successor Global Precipitation Measurement Mission

Author:

Yong Bin1,Liu Die1,Gourley Jonathan J.2,Tian Yudong3,Huffman George J.4,Ren Liliang1,Hong Yang5

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

3. Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

4. Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

5. Advanced Radar Research Center, National Weather Center, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Accurate estimation of high-resolution precipitation on the global scale is extremely challenging. The operational Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) has created over 16 years of high-resolution quantitative precipitation estimation (QPE), and has built the foundation for improved measurements in the upcoming Global Precipitation Measurement (GPM) mission. TMPA is intended to produce the “best effort” estimates of quasi-global precipitation from almost all available satelliteborne precipitation-related sensors by consistently calibrating them with the high-quality measurements from the core instrument platform aboard TRMM. Recently, the TMPA system has been upgraded to version 7 to take advantage of newer and better sources of satellite inputs than version 6, and has attracted a large user base. A key product from TMPA is the near-real-time product (TMPA-RT), as its timeliness is particularly appealing for time-sensitive applications such as flood and landslide monitoring. TMPA-RT’s error characteristics on a global scale have yet to be extensively quantified and understood. In this study, efforts are focused on a systematic evaluation of four sets of mainstream TMPA-RT estimates on the global scale. The analysis herein indicates that the latest version 7 TMPA-RT with the monthly climatological calibration had the lowest daily systematic biases of approximately 9% over land and –11% over ocean (relative to the gauge-adjusted research product). However, there still exist some unresolved issues in mountainous areas (especially the Tibetan Plateau) and high-latitude belts, and for estimating extreme rainfall rates with high variability at small scales. These global error characteristics and their regional and seasonal variations revealed in this paper are expected to serve as the benchmark for the upcoming GPM mission.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3