Drivers and Environmental Responses to the Changing Annual Snow Cycle of Northern Alaska

Author:

Cox Christopher J.1,Stone Robert S.2,Douglas David C.3,Stanitski Diane M.4,Divoky George J.5,Dutton Geoff S.6,Sweeney Colm6,George J. Craig7,Longenecker David U.6

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

2. Science and Technology Corporation, and Global Monitoring Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

3. United States Geological Survey, Alaska Science Center, Juneau, Alaska

4. Global Monitoring Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

5. Friends of Cooper Island, Seattle, Washington

6. Cooperative Institute for Research in Environmental Sciences, and Global Monitoring Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

7. Department of Wildlife Management, North Slope Borough, Utqiag˙vik, Alaska

Abstract

Abstract Linkages between atmospheric, ecological, and biogeochemical variables in the changing Arctic are analyzed using long-term measurements near Utqiaġvik (formerly Barrow), Alaska. Two key variables are the date when snow disappears in spring, as determined primarily by atmospheric dynamics, precipitation, air temperature, winter snow accumulation, and cloud cover, and the date of onset of snowpack in autumn that is additionally influenced by ocean temperature and sea ice extent. In 2015 and 2016 the snow melted early at Utqiaġvik owing mainly to anomalous warmth during May of both years attributed to atmospheric circulation patterns, with 2016 having the record earliest snowmelt. These years are discussed in the context of a 115-yr snowmelt record at Utqiaġvik with a trend toward earlier melting since the mid-1970s (–2.86 days decade–1, 1975–2016). At nearby Cooper Island, where a colony of seabirds, black guillemots, have been monitored since 1975, timing of egg laying is correlated with Utqiaġvik snowmelt with 2015 and 2016 being the earliest years in the 42-yr record. Ice out at a nearby freshwater lagoon is also correlated with Utqiaġvik snowmelt. The date when snow begins to accumulate in autumn at Utqiaġvik shows a trend toward later dates (+4.6 days decade–1, 1975–2016), with 2016 being the latest on record. The relationships between the lengthening snow-free season and regional phenology, soil temperatures, fluxes of gases from the tundra, and to regional sea ice conditions are discussed. Better understanding of these interactions is needed to predict the annual snow cycles in the region at seasonal to decadal scales and to anticipate coupled environmental responses.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3