Using High-Resolution GPS Tracking Data of Bird Flight for Meteorological Observations

Author:

Treep Jelle1,Bohrer Gil2,Shamoun-Baranes Judy1,Duriez Olivier3,Prata de Moraes Frasson Renato2,Bouten Willem1

Affiliation:

1. Computational Geo-Ecology, IBED, University of Amsterdam, Amsterdam, Netherlands

2. Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio

3. CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France

Abstract

Abstract Bird flight is strongly influenced by local meteorological conditions. With increasing amounts of high-frequency GPS data of bird movement becoming available, as tags become cheaper and lighter, opportunities are created to obtain large datasets of quantitative meteorological information from observations conducted by bird-borne tags. In this article we propose a method for estimating wind velocity and convective velocity scale from tag-based high-frequency GPS data of soaring birds in flight. The flight patterns of soaring birds are strongly influenced by the interactions between atmospheric boundary layer processes and the morphology of the bird; climb rates depend on vertical air motion, flight altitude depends on boundary layer height, and drift off the bird’s flight path depends on wind speed and direction. We combine aerodynamic theory of soaring bird flight, the bird’s morphological properties, and three-dimensional GPS measurements at 3-s intervals to estimate the convective velocity scale and horizontal wind velocity at the locations and times of flight. We use wind speed and direction observations from meteorological ground stations and estimates of convective velocity from the Ocean–Land–Atmosphere Model (OLAM) to evaluate our findings. Although not collocated, our wind velocity estimates are consistent with ground station data, and convective velocity–scale estimates are consistent with the meteorological model. Our work demonstrates that biologging offers a novel alternative approach for estimating atmospheric conditions on a spatial and temporal scale that complements existing meteorological measurement systems.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3