Linking Anomalous Moisture Transport And Drought Episodes in the IPCC Reference Regions

Author:

Drumond Anita1,Stojanovic Milica1,Nieto Raquel1,Vicente-Serrano Sergio Martin2,Gimeno Luis1

Affiliation:

1. Environmental Physics Laboratory, Universidade de Vigo, Ourense, Spain

2. Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Campus de Aula Dei, Zaragoza, Spain

Abstract

AbstractDroughts are complex and may be triggered by different mechanisms, such as atmospheric circulation, moisture transport, and thermodynamic processes. Significant research has been completed to characterize precipitation in the Intergovernmental Panel on Climate Change (IPCC) reference regions (RRs), but a systematic analysis of atmospheric transport linked to drought episodes is still missing. This article describes a catalog in which the drought episodes over the RRs are identified during 1980–2015, and the role of the moisture transport anomalies from the respective major climatological moisture sources during the most severe meteorological drought episode registered for each RR is analyzed. For each of the 27 RRs defined in the IPCC Fifth Assessment Report, drought episodes were identified at 1-, 6-, and 12-month time scales through the standardized precipitation evapotranspiration index (SPEI). SPEI values were computed using time series of the monthly precipitation and atmospheric evaporative demand (AED) averaged over each RR. The approach, which was applied to both identify the major climatological moisture sources and sinks for each RR and to investigate anomalies in moisture transport during the episode, is based on the Lagrangian flexible particle dispersion model (FLEXPART), integrated with the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data. For each RR, the following components were analyzed: a) moisture uptake over sources, b) moisture supply from the sources into the RR, and c) moisture supply from the RR into its sink. Although performed for just one case, this analysis illustrates how the moisture transport may impact the RR during extreme conditions. The results are organized in a web page available to the scientific community and stakeholders.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference98 articles.

1. Southern South America [in “State of the Climate in 2008”];Aceituno;Bull. Amer. Meteor. Soc.,2009

2. Constraints on future changes in climate and the hydrological cycle;Allen;Nature,2002

3. Allen, R. G., L. S.Pereira, D.Raes, and M.Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp., www.fao.org/docrep/X0490E/X0490E00.htm.

4. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring;Beguería;Int. J. Climatol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3