An Integrated Assessment of Measured and Modeled Integrated Water Vapor in Switzerland for the Period 2001–03

Author:

Guerova G.1,Brockmann E.2,Schubiger F.3,Morland J.1,Mätzler C.1

Affiliation:

1. Institute of Applied Physics, University of Bern, Bern, Switzerland

2. Swiss Federal Office of Topography, Wabern, Switzerland

3. Federal Office of Meteorology and Climatology, Zurich, Switzerland

Abstract

Abstract In this paper an integrated assessment of the vertically integrated water vapor (IWV) measured by radiosonde, microwave radiometer (MWR), and GPS and modeled by the limited-area mesoscale model of MeteoSwiss is presented. The different IWV measurement techniques are evaluated through intercomparisons of GPS to radiosonde in Payerne, Switzerland, and to the MWR operated at the Institute of Applied Physics at the University of Bern in Switzerland. The validation of the IWV field of the nonhydrostatic mesoscale Alpine Model (aLMo) of MeteoSwiss is performed against 14 GPS sites from the Automated GPS Network of Switzerland (AGNES) in the period of 2001–03. The model forecast and the nudging analysis are evaluated, with special attention paid to the diurnal cycle. The results from the GPS–radiosonde intercomparison are in agreement, but with a bimodal distribution of the day-to-night basis. At 0000 UTC, the bias is negative (−0.4 kg m−2); at 1200 UTC, it is positive (0.9 kg m−2) and the variability increases. The intercomparison of GPS to MWR shows better agreement (0.4 kg m−2), with a small increase of the daytime bias with 0.3 kg m−2. The intercomparison of MWR to the radiosonde gives a bimodal distribution of the bias, with an increase in the standard deviation at the daytime measurement. The relative bias is negative (−3%) at 0000 UTC and is positive (3%) at 1200 UTC. Based on this cross correlation, it can be concluded that the bimodal distribution is a result of radiosonde humidity measurements. Possible reasons are the solar-heating correction or sensor errors. The monthly bias and standard deviation of aLMo exhibit a strong seasonal dependence with a pronounced dry bias during the warm months of May–October 2002. The diurnal IWV cycle in 2001 shows good model performance between 0000 and 0900 UTC but IWV underestimation by up to 1.5 kg m−2 for the rest of the day. In 2002 the diurnal cycle shows a systematic dry bias in both the analysis and forecast that is more pronounced in the analysis. This substantial underestimation of IWV was found to correlate with overestimation of aLMo precipitation, especially light precipitation up to 0.1 mm (6 h)−1 in 2002. There is strong evidence that this underestimation can be related to the dry radiosonde bias in midday summer observations. The aLMo dry bias is about 1.0–1.5 kg m−2 greater in the nudging analysis as compared with the forecast initialized at 0000 UTC.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference27 articles.

1. Allgemeine Meteorologie.;Berg,1948

2. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system.;Bevis;J. Geophys. Res.,1992

3. Brockmann, E. and D.Inechen. 2005. COST Action 716: Final report. LPT Analysis Centre, 45–48. [Available online at http://www.oso.chalmers.se/~kge/cost716.html.].

4. Swiss activities in combining GPS with meteorology.;Brockmann,2002

5. The use of GPS to validate NWP systems: The HIRLAM model.;Cucurull;J. Atmos. Oceanic Technol.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3