Observed Strengthening of the Zonal Sea Surface Temperature Gradient across the Equatorial Pacific Ocean*

Author:

Karnauskas Kristopher B.1,Seager Richard1,Kaplan Alexey1,Kushnir Yochanan1,Cane Mark A.1

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Abstract

Abstract Decadal variations of very small amplitude [∼0.3°C in sea surface temperature (SST)] in the tropical Pacific Ocean, the genesis region of the interannual El Niño–Southern Oscillation (ENSO) phenomenon, have been shown to have powerful impacts on global climate. Future projections from different climate models do not agree on how this critical feature will change under the influence of anthropogenic forcing. A number of attempts have been made to resolve this issue by examining observed trends from the 1880s to the present, a period of rising atmospheric concentrations of greenhouse gases. A recent attempt concluded that the three major datasets disagreed on the trend in the equatorial gradient of SST. Using a corrected version of one of these datasets, and extending the analysis to the seasonal cycle, it is shown here that all agree that the equatorial Pacific zonal SST gradient has strengthened from 1880 to 2005 during the boreal fall when this gradient is normally strongest. This result appears to favor a theory for future changes based on ocean dynamics over one based on atmospheric energy considerations. Both theories incorporate the expectation, based on ENSO theory, that the zonal sea level pressure (SLP) gradient in the tropical Pacific is coupled to SST and should therefore strengthen along with the SST gradient. While the SLP gradient has not strengthened, it is found that it appears to have weakened only during boreal spring, consistent with the SST seasonal trends. Most of the coupled models included in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report underestimate the strengthening SST gradient in boreal fall, and show almost no change in the SLP gradient in any season. The observational analyses herein suggest that both theories are at work but with relative strengths that vary seasonally, and that the two theories need not be inconsistent with each other.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3