Hot European Summers and the Role of Soil Moisture in the Propagation of Mediterranean Drought

Author:

Zampieri Matteo1,D’Andrea Fabio1,Vautard Robert2,Ciais Philippe2,de Noblet-Ducoudré Nathalie2,Yiou Pascal2

Affiliation:

1. LMD/IPSL, Ecole Normale Supérieure, Paris, France

2. LSCE/IPSL, Laboratoire CEA/CNRS/UVSQ, Gif sur Yvette, France

Abstract

Abstract Drought in spring and early summer has been shown to precede anomalous hot summer temperature. In particular, drought in the Mediterranean region has been recently shown to precede and to contribute to the development of extreme heat in continental Europe. In this paper, this mechanism is investigated by performing integrations of a regional mesoscale model at the scale of the European continent in order to reproduce hot summer inception, starting with different initial values of soil moisture south of 46°N. The mesoscale model is driven by the large-scale atmospheric conditions corresponding to the 10 hottest summers on record from the European Climate Assessment dataset. A northward progression of heat and drought from late spring to summer is observed from the Mediterranean regions, which leads to a further increase of temperature during summer in temperate continental Europe. Dry air formed over dry soils in the Mediterranean region induces less convection and diminished cloudiness, which gets transported northward by occasional southerly wind, increasing northward temperature and vegetation evaporative demand. Later in the season, drier soils have been established in western and central Europe where they further amplify the warming through two main feedback mechanisms: 1) higher sensible heat emissions and 2) favored upper-air anticyclonic circulation. Drier soils in southern Europe accelerate the northward propagation of heat and drying, increasing the probability of strong heat wave episodes in the middle or the end of the summer.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3