Response of the West African Monsoon to the Madden–Julian Oscillation

Author:

Lavender Sally L.1,Matthews Adrian J.2

Affiliation:

1. School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

2. School of Environmental Sciences, and School of Mathematics, University of East Anglia, Norwich, United Kingdom

Abstract

Abstract Observations show that rainfall over West Africa is influenced by the Madden–Julian oscillation (MJO). A number of mechanisms have been suggested: 1) forcing by equatorial waves; 2) enhanced monsoon moisture supply; and 3) increased African easterly wave (AEW) activity. However, previous observational studies are not able to unambiguously distinguish between cause and effect. Carefully designed model experiments are used to assess these mechanisms. Intraseasonal convective anomalies over West Africa during the summer monsoon season are simulated in an atmosphere-only global circulation model as a response to imposed sea surface temperature (SST) anomalies associated with the MJO over the equatorial warm pool region. 1) Negative SST anomalies stabilize the atmosphere leading to locally reduced convection. The reduced convection leads to negative midtropospheric latent heating anomalies that force dry equatorial waves. These waves propagate eastward (Kelvin wave) and westward (Rossby wave), reaching Africa approximately 10 days later. The associated negative temperature anomalies act to destabilize the atmosphere, resulting in enhanced monsoon convection over West and central Africa. The Rossby waves are found to be the most important component, with associated westward-propagating convective anomalies over West Africa. The eastward-propagating equatorial Kelvin wave also efficiently triggers convection over the eastern Pacific and Central America, consistent with observations. 2) An increase in boundary layer moisture is found to occur as a result of the forced convective anomalies over West Africa rather than a cause. 3) Increased shear on the African easterly jet, leading to increased AEW activity, is also found to occur as a result of the forced convective anomalies in the model.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3