Attribution of Projected Changes in Atmospheric Moisture Transport in the Arctic: A Self-Organizing Map Perspective

Author:

Skific Natasa1,Francis Jennifer A.2,Cassano John J.3

Affiliation:

1. Department of Atmospheric Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

2. Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

3. Department of Atmospheric and Oceanic Sciences, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Abstract

Abstract Meridonal moisture transport into the Arctic derived from one simulation of the National Center for Atmospheric Research Community Climate System Model (CCSM3), spanning the periods of 1960–99, 2010–30, and 2070–89, is analyzed. The twenty-first-century simulation incorporates the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 scenario for CO2 and sulfate emissions. Modeled and observed [from the 40-yr ECMWF Re-Analysis (ERA-40)] sea level pressure (SLP) fields are classified using a neural network technique called self-organizing maps to distill a set of characteristic atmospheric circulation patterns over the region north of 60°N. Model performance is validated for the twentieth century by comparing the frequencies of occurrence of particular circulation regimes in the model to those from the ERA-40. The model successfully captures dominant SLP patterns, but differs from observations in the frequency with which certain patterns occur. The model’s twentieth-century vertical mean moisture transport profile across 70°N compares well in terms of structure but exceeds the observations by about 12% overall. By relating moisture transport to a particular circulation regime, future changes in moisture transport across 70°N are assessed and attributed to changes in frequency with which the atmosphere resides in particular SLP patterns and/or to other factors, such as changes in the meridional moisture gradient. By the late twenty-first century, the transport is projected to increase by about 21% in this model realization, with the largest contribution (32%) to the total change occurring in summer. Only about one-quarter of the annual increase is due to changes in pattern occupancy, suggesting that the majority is related to mainly thermodynamic factors. A larger poleward moisture transport likely constitutes a positive feedback on the system through related increases in latent heat release and the emission of longwave radiation to the surface.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3