The Inverse Effect of Annual-Mean State and Annual-Cycle Changes on ENSO

Author:

An Soon-Il1,Ham Yoo-Geun2,Kug Jong-Seong3,Timmermann Axel4,Choi Jung1,Kang In-Sik2

Affiliation:

1. Department of Atmospheric Sciences/Global Environmental Lab, Yonsei University, Seoul, South Korea

2. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

3. Korea Ocean Research and Development Institute, Ansan, South Korea

4. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract The influence of the tropical Pacific annual-mean state on the annual-cycle amplitude and El Niño–Southern Oscillation (ENSO) variability is studied using the Max Planck Institute for Meteorology coupled general circulation model (CGCM) ECHAM5/Max Planck Institute Ocean Model (MPI-OM1). In a greenhouse warming experiment, an intensified annual cycle of sea surface temperature (SST) in the eastern tropical Pacific is associated with reduced ENSO variability, and vice versa. Analysis showed that the annual-mean states, especially the surface warming in the western Pacific and the thermocline deepening in the central Pacific, which is concurrent with the strong annual cycle, act to suppress ENSO amplitude and to intensify the annual-cycle amplitude, and vice versa. The western Pacific warming acts to reduce air–sea coupling strength and to shorten the ocean adjustment time scale, and the deepening of central Pacific thermocline acts to diminish vertical advection of the anomalous ocean temperature by the annual-mean upwelling. Consequently, ENSO activity is suppressed by the annual-mean states during the strong annual-cycle decades, and the opposite case associated with the weak annual-cycle decades is also true. Furthermore, the time integration of an intermediate ENSO model forced with different background state configurations, and a stability analysis of its linearized version, show that annual-mean background states during the weak (strong) annual-cycle decades are characterized by an enhanced (reduced) linear growth rate of ENSO or similarly large (small) variability of ENSO. However, the annual-cycle component of the background state changes cannot significantly modify ENSO variability. Using a hybrid coupled model, it is demonstrated that diagnosed annual-mean background states corresponding to a reduced (enhanced) annual cycle suppress (enhance) the development of the annual cycle of SST in the eastern equatorial Pacific, mainly through the weakening (intensifying) of zonal temperature advection of annual-mean SST by the annual-cycle zonal current. The above results support the idea that climate background state changes control both ENSO and the annual-cycle amplitude in opposing ways.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3