Another Look at Interannual-to-Interdecadal Variations of the East Asian Winter Monsoon: The Northern and Southern Temperature Modes

Author:

Wang Bin1,Wu Zhiwei2,Chang Chih-Pei3,Liu Jian4,Li Jianping5,Zhou Tianjun5

Affiliation:

1. Department of Meteorology, and IPRC, University of Hawaii at Manoa, Honolulu, Hawaii

2. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, and Department of Meteorology, and IPRC, University of Hawaii at Manoa, Honolulu, Hawaii

3. Department of Meteorology, Naval Postgraduate School, Monterey, California, and Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

4. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China

5. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract This study investigates the causes of interannual-to-interdecadal variability of the East Asian (EA; 0°–60°N, 100°–140°E) winter monsoon (EAWM) over the past 50 yr (1957–2006). The winter mean surface air temperature variations are dominated by two distinct principal modes that together account for 74% of the total temperature variance. The two modes have notably different circulation structures and sources of variability. The northern mode, characterized by a westward shift of the EA major trough and enhanced surface pressure over central Siberia, represents a cold winter in the northern EA resulting from cold-air intrusion from central Siberia. The southern mode, on the other hand, features a deepening EA trough and increased surface pressure over Mongolia, representing a cold winter south of 40°N resulting from cold-air intrusion from western Mongolia. The cold northern mode is preceded by excessive autumn snow covers over southern Siberia–Mongolia, whereas the cold southern mode is preceded by development of La Niña episodes and reduced snow covers over northeast Siberia. These remarkably different spatiotemporal structures and origins are primarily associated with interannual variations. On the decadal or longer time scale their structures are somewhat similar and are preceded by similar autumn sea surface temperature anomalies over the North Atlantic and tropical Indian Ocean. The two modes found for the EA region also represent the winter temperature variability over the entire Asian continent. Thus, study of the predictability of the two modes may shed light on understanding the predictable dynamics of the Asian winter monsoon.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3