Evolution and Trend of the Outgoing Longwave Radiation Spectrum

Author:

Huang Yi1,Ramaswamy V.2

Affiliation:

1. Princeton University, Princeton, New Jersey

2. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

Abstract The variability and change occurring in the outgoing longwave radiation (OLR) spectrum are investigated by using simulations performed with a Geophysical Fluid Dynamics Laboratory coupled atmosphere–ocean–land general circulation model. First, the variability in unforced climate (natural variability) is simulated. Then, the change of OLR spectrum due to forced changes in climate is analyzed for a continuous 25-yr time series and for the difference between two time periods (1860s and 2000s). Spectrally resolved radiances have more pronounced and complex changes than broadband fluxes. In some spectral regions, the radiance change is dominated by just one controlling factor (e.g., the window region and CO2 band center radiances are controlled by surface and stratospheric temperatures, respectively) and well exceeds the natural variability. In some other spectral bands, the radiance change is influenced by multiple and often competing factors (e.g., the water vapor band radiance is influenced by both water vapor concentration and temperature) and, although still detectable against natural variability at certain frequencies, demands stringent requirements (drift less than 0.1 K decade−1 at spectral resolution no less than 1 cm−1) of observational platforms. The difference between clear-sky and all-sky radiances in the forced climate problem offers a measure of the change in the cloud radiative effect, but with a substantive dependence on the temperature lapse rate change. These results demonstrate that accurate and continuous observations of the OLR spectrum provide an advantageous means for monitoring the changes in the climate system and a stringent means for validating climate models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3