A Model-Based Assessment of Potential Impacts of Man-Made Reservoirs on Precipitation

Author:

Winchester Jesse1,Mahmood Rezaul1,Rodgers William1,Hossain Faisal2,Rappin Eric1,Durkee Joshua3,Chronis Themis4

Affiliation:

1. Meteorology Program, Department of Geography and Geology and Kentucky Climate Center, Western Kentucky University, Bowling Green, Kentucky

2. Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

3. Meteorology Program, and CHAOS Laboratory, Department of Geography and Geology, Western Kentucky University, Bowling Green, Kentucky

4. Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Abstract

Abstract Land-use land-cover change (LULCC) plays an important role in weather and climate systems. Human modifications of land cover include building reservoirs and thus creating artificial lakes for multipurpose use. In this research, the authors have completed a Weather Research and Forecasting (WRF) Model–based assessment of impacts of two large parallel lakes on precipitation. This area is located in the western part of the states of Kentucky and Tennessee and known as the Land between the Lakes (LBL). To determine the impacts, this study has replaced the lakes with grass, deciduous forests, and bare soil and conducted model simulations for three precipitation events of different magnitudes. The analysis suggests that precipitation increased in some cases and reduced in others. One of the key impacts of LULCC in the LBL area is the relocation of precipitation cells and also the timing of precipitation. Local precipitation amounts increased or decreased with these relocations. In summary, establishment of lakes or replacement of lakes with alternate land cover may modify local precipitation in the LBL area.

Funder

USDA-ARS

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3