Convective Initiation ahead of the Sea-Breeze Front

Author:

Fovell Robert G.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract In earlier work, a three-dimensional cloud model was used to simulate the interaction between the sea-breeze front (SBF) and front-parallel horizontal convective rolls (HCRs), resulting in the SBF systematically encountering roll updrafts and downdrafts as it progressed inland. Interestingly, deep convection was spawned above an HCR updraft ahead of the SBF as the front approached, well before the inevitable front–roll merger. Ostensibly, both the sea-breeze and roll circulations were required for deep convection to be present in this case at all because convection was entirely absent when either phenomenon was removed. Further analysis reveals why both circulations were necessary yet not sufficient for the excitation of deep convection in this case. The sea-breeze circulation (SBC) made its upstream (inland) environment more favorable for convection by bringing about persistent if gentle lifting over an extended region stretching well ahead of the SBF. This persistent ascent established a moist and cool tongue of air, manifested by a visible and/or subvisible cloud feature termed the cloud shelf emanating ahead of the front. Though this lifting moistened and destabilized the environment, the roll’s direct and indirect effects on this moist tongue were also required. The former consisted of a moisture plume lofted by the roll updraft, and the latter consisted of obstacle effect gravity waves generated as the roll drafts penetrated through the top of the boundary layer, into the SBC-associated offshore flow farther aloft. These provided the missing spark, which led to rapid growth of cumulus above the roll updraft, drawing first from air located above the boundary layer. Once established, deep convection above the roll updraft modulated cloudiness above the approaching SBF, at first suppressing it but subsequently assuring its reestablishment and eventual growth into deep convection, again prior to the front–roll merger. This resulted from the influence of gravity waves excited owing to heating and cooling within the roll cloud.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3