Affiliation:
1. Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California
2. National Center for Atmospheric Research, Boulder, Colorado
3. Department of Civil and Environmental Engineering, Stanford University, Stanford, California
Abstract
Abstract
Large-eddy simulation (LES) has been an essential tool in the development of theory and parameterizations for clouds, but when applied to stratocumulus clouds under sharp temperature inversions, many LES models produce an unrealistically thin cloud layer and a decoupled boundary layer structure. Here, explicit filtering and reconstruction are used for simulation of stratocumulus clouds observed during the first research flight (RF01) of the Second Dynamics and Chemistry of the Marine Stratocumulus field study (DYCOMS II). The dynamic reconstruction model (DRM) is used within an explicit filtering and reconstruction framework, partitioning subfilter-scale motions into resolvable subfilter scales (RSFSs) and unresolvable subgrid scales (SGSs). The former are reconstructed, and the latter are modeled. Differing from traditional turbulence models, the reconstructed RSFS stress/fluxes can produce backscatter of turbulence kinetic energy (TKE) and, importantly, turbulence potential energy (TPE). The modeled backscatter reduces entrainment at the cloud top and, meanwhile, strengthens resolved turbulence through preserving TKE and TPE, resulting in a realistic boundary layer with an adequate amount of cloud water and vertically coupled turbulent eddies. Additional simulations are performed in the terra incognita, when the grid spacing of a simulation becomes comparable to the size of the most energetic eddies. With 20-m vertical and 1-km horizontal grid spacings, simulations using DRM provide a reasonable representation of bulk properties of the stratocumulus-capped boundary layer.
Funder
National Science Foundation
Publisher
American Meteorological Society
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献