Primary Modes of Global Drop Size Distributions

Author:

Dolan B.1,Fuchs B.1,Rutledge S. A.1,Barnes E. A.1,Thompson E. J.2

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. Applied Physics Laboratory, University of Washington, Seattle, Washington

Abstract

Understanding drop size distribution (DSD) variability has important implications for remote sensing and numerical modeling applications. Twelve disdrometer datasets across three latitude bands are analyzed in this study, spanning a broad range of precipitation regimes: light rain, orographic, deep convective, organized midlatitude, and tropical oceanic. Principal component analysis (PCA) is used to reveal comprehensive modes of global DSD spatial and temporal variability. Although the locations contain different distributions of individual DSD parameters, all locations are found to have the same modes of variability. Based on PCA, six groups of points with unique DSD characteristics emerge. The physical processes that underpin these groups are revealed through supporting radar observations. Group 1 (group 2) is characterized by high (low) liquid water content (LWC), broad (narrow) distribution widths, and large (small) median drop diameters D0. Radar analysis identifies group 1 (group 2) as convective (stratiform) rainfall. Group 3 is characterized by weak, shallow radar echoes and large concentrations of small drops, indicative of warm rain showers. Group 4 identifies heavy stratiform precipitation. The low latitudes exhibit distinct bimodal distributions of the normalized intercept parameter N w, LWC, and D0 and are found to have a clustering of points (group 5) with high rain rates, large N w, and moderate D0, a signature of robust warm rain processes. A distinct group associated with ice-based convection (group 6) emerges in the midlatitudes. Although all locations exhibit the same covariance of parameters associated with these groups, it is likely that the physical processes responsible for shaping the DSDs vary as a function of location.

Funder

National Aeronautics and Space Administration

Office of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

1. The Atmospheric Radiation Measurement Program

2. An Observationally Based Conceptual Model of Warm Oceanic Convective Rain in the Tropics

3. Systematic variation of drop size and radar-rainfall relations

4. Partitioning tropical oceanic convective and stratiform rains by draft strength

5. Barros, A. P., and Coauthors, 2014: The GPM GV Integrated Precipitation and Hydrology Experiment (IPHEx) in the southern Appalachians—Focus on water cycle processes. 2014 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H11M-04.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3