Affiliation:
1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Abstract
Abstract
In some prominent extreme precipitation and flash flood events, radar and rain gauge observations have suggested that the heaviest short-term rainfall accumulations (up to 177 mm h−1) were associated with supercells or mesovortices embedded within larger convective systems. In this research, we aim to identify the influence that rotation has on the storm-scale processes associated with heavy precipitation. Numerical model simulations conducted herein were inspired by a rainfall event that occurred in central Texas in October 2015 where the most extreme rainfall accumulations were collocated with meso-β-scale vortices. Five total simulations were performed to test the sensitivity of precipitation processes to rotation. A control simulation, based on a wind profile from the aforementioned event, was compared with two experiments with successively weaker low-level shear. With greater environmental low-level shear, more precipitation fell, in both a point-maximum and an area-averaged sense. Intense, rotationally induced low-level vertical accelerations associated with the dynamic nonlinear perturbation vertical pressure gradient force were found to enhance the low- to midlevel updraft strength and total vertical mass flux and allowed access to otherwise inhibited sources of moisture and CAPE in the higher-shear simulations. The dynamical accelerations, which increased with the intensity of the low-level shear, dominated over buoyant accelerations in the low levels and were responsible for inducing more intense low-level updrafts that were sustained despite a stable boundary layer.
Funder
Division of Atmospheric and Geospace Sciences
Division of Graduate Education
National Oceanic and Atmospheric Administration
Publisher
American Meteorological Society
Reference84 articles.
1. A numerical simulation of cyclic mesocyclogenesis;Adlerman;J. Atmos. Sci.,1999
2. Flood fatalities in the United States;Ashley;J. Appl. Meteor. Climatol.,2008
3. Bow echo mesovortices. Part I: Processes that influence their damaging potential;Atkins;Mon. Wea. Rev.,2009
4. Environmental ingredients for supercells and tornadoes within Hurricane Ivan;Baker;Wea. Forecasting,2009
5. The supercell spectrum. Part I: A review of research related to supercell precipitation morphology;Beatty;Electron. J. Severe Storms Meteor.,2008
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献