Sensitivity of Sudden Stratospheric Warmings to Previous Stratospheric Conditions

Author:

Cámara Alvaro de la1,Albers John R.2,Birner Thomas3,Garcia Rolando R.1,Hitchcock Peter1,Kinnison Douglas E.1,Smith Anne K.1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

3. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract The Whole Atmosphere Community Climate Model, version 4 (WACCM4), is used to investigate the influence of stratospheric conditions on the development of sudden stratospheric warmings (SSWs). To this end, targeted experiments are performed on selected modeled SSW events. Specifically, the model is reinitialized three weeks before a given SSW, relaxing the surface fluxes, winds, and temperature below 10 km to the corresponding fields from the free-running simulation. Hence, the tropospheric wave evolution is unaltered across the targeted experiments, but the stratosphere itself can evolve freely. The stratospheric zonal-mean state is then altered 21 days prior to the selected SSWs and rerun with an ensemble of different initial conditions. It is found that a given tropospheric evolution concomitant with the development of an SSW does not uniquely determine the occurrence of an event and that the stratospheric conditions are relevant to the subsequent evolution of the stratospheric flow toward an SSW, even for a fixed tropospheric evolution. It is also shown that interpreting the meridional heat flux at 100 hPa as a proxy of the tropospheric injection of wave activity into the stratosphere should be regarded with caution and that stratospheric dynamics critically influence the heat flux at that altitude.

Funder

National Center for Atmospheric Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3