Sill-Influenced Exchange Flows in Ice Shelf Cavities

Author:

Zhao Ken X.1,Stewart Andrew L.1,McWilliams James C.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

AbstractBathymetric sills are important features in the ocean-filled cavities beneath a few fast-retreating ice shelves in West Antarctica and northern Greenland. The sills can be high enough to obstruct the cavity circulation and thereby modulate glacial melt rates. This study focuses on the idealized problem of diabatically driven, sill-constrained overturning circulation in a cavity. The circulation beneath fast-melting ice shelves can generally be characterized by an inflow of relatively warm dense water (with temperatures of a few degrees Celsius above the local freezing point) at depth and cold, less-dense, outflowing water, which exhibits an approximately two-layer structure in observations. We use a two-layer isopycnal hydrostatic model to study the cross-sill exchange of these waters in ice shelf cavities wide enough to be rotationally dominated. A quasigeostrophic constraint is determined for the transport imposed by the stratification. Relative to this constraint, the key parameters controlling the transport and its variability are the sill height relative to the bottom layer thickness and the strength of the friction relative to the potential vorticity (PV) gradient imposed by the sill. By varying these two key parameters, we simulate a diversity of flow phenomena. For a given meridional pressure gradient, the cross-sill transport is controlled by sill height beyond a critical threshold in the eddy-permitting, low-friction regime, while it is insensitive to friction in both the low-friction and high-friction regimes. We present theoretical ideas to explain the flow characteristics: a Stommel boundary layer for the friction-dominated regime; mean–eddy PV balances and energy conversion in the low-friction, low-sill regime; and hydraulic control in the low-friction, high-sill regime, with various estimates for transport in each of these regimes.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3