Mixing Coefficient in Stably Stratified Flows

Author:

Kantha Lakshmi1,Luce Hubert2

Affiliation:

1. Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, Colorado

2. Université de Toulon, Mediterranean Institute of Oceanography, UM 110, Marseille, France

Abstract

AbstractTurbulent mixing in the interior of the oceans is not as well understood as mixing in the oceanic boundary layers. Mixing in the generally stably stratified interior is primarily, although not exclusively, due to intermittent shear instabilities. Part of the energy extracted by the Reynolds stresses acting on the mean shear is expended in increasing the potential energy of the fluid column through a buoyancy flux, while most of it is dissipated. The mixing coefficient χm, the ratio of the buoyancy flux to the dissipation rate of turbulence kinetic energy ε, is an important parameter, since knowledge of χm enables turbulent diffusivities to be inferred. Theory indicates that χm must be a function of the gradient Richardson number. Yet, oceanic studies suggest that a value of around 0.2 for χm gives turbulent diffusivities that are in good agreement with those inferred from tracer studies. Studies by scientists working with atmospheric radars tend to reinforce these findings but are seldom referenced in oceanographic literature. The goal of this paper is to bring together oceanographic, atmospheric, and laboratory observations related to χm and to report on the values deduced from in situ data collected in the lower troposphere by unmanned aerial vehicles, equipped with turbulence sensors and flown in the vicinity of the Middle and Upper Atmosphere (MU) radar in Japan. These observations are consistent with past studies in the oceans, in that a value of around 0.16 for χm yields good agreement between ε derived from turbulent temperature fluctuations using this value and ε obtained directly from turbulence velocity fluctuations.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3