Scattering of Low-Mode Internal Tides at a Continental Shelf

Author:

Wang Shuya1,Chen Xu1,Wang Jinhu1,Li Qun2,Meng Jing3,Xu Yang1

Affiliation:

1. Key Laboratory of Physical Oceanography, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

2. Polar Research Institute of China, State Oceanic Administration, Shanghai, China

3. College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Abstract

AbstractA series of laboratory experiments are performed to investigate the scattering of low-mode internal tides at a continental shelf by varying the criticality parameter and normalized topographic height independently. A wide-range synchronized particle image velocimetery (PIV) measures the velocity fields of the internal tides. Beams radiate from both the shelf break and the bottom of the slope, indicating that energy transfers from low modes to higher modes, which is verified by the modal decomposition. Energy is also transferred to higher harmonics, whose amplitude is less than a quarter of that of the first harmonic. The fraction of energy transmitted onshore and dissipated on the topography is determined by both the criticality parameter and the normalized topographic height, while the fraction of energy reflected offshore is dependent only on the criticality parameter. Mean flow with a shear structure induced by internal tides is observed along the continental slope, with horizontal velocity generally half of the amplitude of the incident waves. A net onshore transport along the slope is caused by the onshore current with larger thickness. The strength of the mean flow is dependent on both the criticality parameter and the normalized topographic height, and a linear relationship between the energy of the mean flow and the vertical shear of internal tides is revealed.

Funder

Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3