Idealized Study on the Effect of Bottom Topography on the Seasonality of the Stability of the Iceland–Faeroe Front

Author:

Jiménez-Urias Miguel A.1,Thompson LuAnne1

Affiliation:

1. School of Oceanography, University of Washington, Seattle, Washington

Abstract

AbstractWe investigate the effects of bottom topography on the instability, eddy-driven heat flux, and overturning of a front that sits atop a ridge by varying the initial location of an idealized frontal outcrop with respect to a topographic ridge. The front is periodic in the along-ridge direction and unstable to both mixed layer and mesoscale baroclinic instabilities with both instabilities focused on the northern flank of the ridge where the front outcrops. We find agreement with the theoretical predictions for the development of mesoscale instability of the jet in the presence of sloping bottom topography, and we find the initial growth of surface mixed layer eddies is insensitive to topographic variations. However, during the finite amplitude phase of mixed layer instability, we find faster development of mesoscale eddies and thus a stronger cross-front eddy heat flux and residual circulation for the position of the jet where we found the faster growth of mesoscale baroclinic instability. Over an advective time scale that represents the transit time of a water parcel along the Iceland–Faeroe Ridge (IFR), the resulting eddy heat flux is greatest in the cases where the frontal jet experiences the most destabilizing bottom topography of the three cases tested, with values comparable to the heat flux associated with the mean flow. Therefore, eddy dynamics over the IFR frontal region are important contributors to the heat exchanges between the North Atlantic and Nordic Seas, with the bottom topography playing a key role in determining the largest heat fluxes, whether the initial growth is dominated by mixed layer eddies or mesoscale eddies.

Funder

National Aeronautics and Space Administration

Consejo Nacional de Ciencia y Tecnología

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3