Diathermal Heat Transport in a Global Ocean Model

Author:

Holmes Ryan M.1,Zika Jan D.2,England Matthew H.3

Affiliation:

1. Climate Change Research Centre, and Australian Research Council Centre of Excellence for Climate Extremes, and School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

2. School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

3. Climate Change Research Centre, and Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Abstract

AbstractThe rate at which the ocean moves heat from the tropics toward the poles, and from the surface into the interior, depends on diabatic surface forcing and diffusive mixing. These diabatic processes can be isolated by analyzing heat transport in a temperature coordinate (the diathermal heat transport). This framework is applied to a global ocean sea ice model at two horizontal resolutions (1/4° and 1/10°) to evaluate the partioning of the diathermal heat transport between different mixing processes and their spatial and seasonal structure. The diathermal heat transport peaks around 22°C at 1.6 PW, similar to the peak meridional heat transport. Diffusive mixing transfers this heat from waters above 22°C, where surface forcing warms the tropical ocean, to temperatures below 22°C where midlatitude waters are cooled. In the control 1/4° simulation, half of the parameterized vertical mixing is achieved by background diffusion, to which sensitivity is explored. The remainder is associated with parameterizations for surface boundary layer, shear instability, and tidal mixing. Nearly half of the seasonal cycle in the peak vertical mixing heat flux is associated with shear instability in the tropical Pacific cold tongue, highlighting this region’s global importance. The framework presented also allows for quantification of numerical mixing associated with the model’s advection scheme. Numerical mixing has a substantial seasonal cycle and increases to compensate for reduced explicit vertical mixing. Finally, applied to Argo observations the diathermal framework reveals a heat content seasonal cycle consistent with the simulations. These results highlight the utility of the diathermal framework for understanding the role of diabatic processes in ocean circulation and climate.

Funder

Australian Research Council

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3