A Model for the Wind-Driven Current in the Wavy Oceanic Surface Layer: Apparent Friction Velocity Reduction and Roughness Length Enhancement

Author:

Teixeira Miguel A. C.1

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

AbstractA simple analytical model is developed for the current induced by the wind and modified by surface wind waves in the oceanic surface layer, based on a first-order turbulence closure and including the effect of a vortex force representing the Stokes drift of the waves. The shear stress is partitioned between a component due to shear in the current, which is reduced at low turbulent Langmuir number Lat, and a wave-induced component, which decays over a depth proportional to the dominant wavelength λw. The model reproduces the apparent reduction of the friction velocity and enhancement of the roughness length estimated from current profiles, detected in a number of studies. These effects are predicted to intensify as Lat decreases and are entirely attributed to nonbreaking surface waves. The current profile becomes flatter for low Lat owing to a smaller fraction of the total shear stress being supported by the current shear. Comparisons with the comprehensive dataset provided by the laboratory experiments of Cheung and Street show encouraging agreement, with the current speed normalized by the friction velocity decreasing as Lat decreases and λw increases if the model is adjusted to reflect the effects of a full wave spectrum on the intensity and depth of penetration of the wave-induced stress. A version of the model where the shear stress decreases to zero over a depth consistent with the measurements accurately predicts the surface current speed. These results contribute toward developing physically based momentum flux parameterizations for the wave-affected boundary layer in ocean circulation models.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3