A New Parameterization for Entrainment in Overflows

Author:

Cenedese Claudia1,Adduce Claudia2

Affiliation:

1. Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

2. Dipartimento di Scienze dell’Ingegneria Civile, Universita’ RomaTre, Rome, Italy

Abstract

Abstract Dense overflows entrain surrounding waters at specific locations, for example, sills and constrictions, but also along the descent over the continental slope. The amount of entrainment dictates the final properties of these overflows, and thus is of fundamental importance to the understanding of the formation of deep water masses. Even when resolving the overflows, coarse resolution global circulation and climate models cannot resolve the entrainment processes that are often parameterized. A new empirical parameterization is suggested, obtained using an oceanic and laboratory dataset, which includes two novel aspects. First, the parameterization depends on both the Froude number (Fr) and Reynolds number of the flow. Second, it takes into account subcritical (Fr < 1) entrainment. A weak, but nonzero, entrainment can change the final density and, consequently, the depth and location of important water masses in the open ocean. This is especially true when the dense current follows a long path over the slope in a subcritical regime, as observed in the southern Greenland Deep Western Boundary Current. A streamtube model employing this new parameterization gives results that are more consistent with previous laboratory and oceanographic observations than when a classical parameterization is used. Finally, the new parameterization predictions compare favorably to recent oceanographic measurements of entrainment and turbulent diapycnal mixing rates, using scaling arguments to relate the entrainment ratio to diapycnal diffusivities.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3