The Role of Mesoscale Eddies in the Rectification of the Southern Ocean Response to Climate Change

Author:

Farneti Riccardo1,Delworth Thomas L.2,Rosati Anthony J.2,Griffies Stephen M.2,Zeng Fanrong2

Affiliation:

1. Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

2. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

Abstract Simulations from a fine-resolution global coupled model, the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.4 (CM2.4), are presented, and the results are compared with a coarse version of the same coupled model, CM2.1, under idealized climate change scenarios. A particular focus is given to the dynamical response of the Southern Ocean and the role played by the eddies—parameterized or permitted—in setting the residual circulation and meridional density structure. Compared to the case in which eddies are parameterized and consistent with recent observational and idealized modeling studies, the eddy-permitting integrations of CM2.4 show that eddy activity is greatly energized with increasing mechanical and buoyancy forcings, buffering the ocean to atmospheric changes, and the magnitude of the residual oceanic circulation response is thus greatly reduced. Although compensation is far from being perfect, changes in poleward eddy fluxes partially compensate for the enhanced equatorward Ekman transport, leading to weak modifications in local isopycnal slopes, transport by the Antarctic Circumpolar Current, and overturning circulation. Since the presence of active ocean eddy dynamics buffers the oceanic response to atmospheric changes, the associated atmospheric response to those reduced ocean changes is also weakened. Further, it is hypothesized that present numerical approaches for the parameterization of eddy-induced transports could be too restrictive and prevent coarse-resolution models from faithfully representing the eddy response to variability and change in the forcing fields.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3