A Global Climatology of Wind–Wave Interaction

Author:

Hanley Kirsty E.1,Belcher Stephen E.1,Sullivan Peter P.2

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Generally, ocean waves are thought to act as a drag on the surface wind so that momentum is transferred downward, from the atmosphere into the waves. Recent observations have suggested that when long wavelength waves—which are characteristic of remotely generated swell—propagate faster than the surface wind, momentum can also be transferred upward. This upward momentum transfer acts to accelerate the near-surface wind, resulting in a low-level wave-driven wind jet. Previous studies have suggested that the sign reversal of the momentum flux is well predicted by the inverse wave age, the ratio of the surface wind speed to the speed of the waves at the peak of the spectrum. Data from the 40-yr ECMWF Re-Analysis (ERA-40) have been used here to calculate the global distribution of the inverse wave age to determine whether there are regions of the ocean that are usually in the wind-driven wave regime and others that are generally in the wave-driven wind regime. The wind-driven wave regime is found to occur most often in the midlatitude storm tracks where wind speeds are generally high. The wave-driven wind regime is found to be prevalent in the tropics where wind speeds are generally light and swell can propagate from storms at higher latitudes. The inverse wave age is also a useful indicator of the degree of coupling between the local wind and wave fields. The climatologies presented emphasize the nonequilibrium that exists between the local wind and wave fields and highlight the importance of swell in the global oceans.

Publisher

American Meteorological Society

Subject

Oceanography

Reference25 articles.

1. Meteorology Today: An Introduction to Weather, Climate, and the Environment.;Ahrens,2003

2. Revisiting the Pierson–Moskowitz asymptotic limits for fully developed wind waves.;Alves;J. Phys. Oceanogr.,2003

3. Turbulent shear flow over slowly moving waves.;Belcher;J. Fluid Mech.,1993

4. Intercomparison of different wind–wave reanalyses.;Caires;J. Climate,2004

5. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer.;Chen;J. Atmos. Oceanic Technol.,2002

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3