Narrowband Oscillations in the Upper Equatorial Ocean. Part I: Interpretation as Shear Instabilities

Author:

Moum J. N.1,Nash J. D.1,Smyth W. D.1

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

Abstract Extended measurements of temperature fluctuations that include the turbulence wavenumber band have now been made using rapidly sampled fast thermistors at multiple depths above the core of the Equatorial Undercurrent on the Tropical Atmosphere Ocean (TAO) mooring at 0°, 140°W. These measurements include the signature of narrowband oscillations as well as turbulence, from which the temperature variance dissipation rate χT and the turbulence energy dissipation rate εχ are estimated. The narrowband oscillations are characterized by the following:groupiness—packets consist of O(10) oscillations;spectral peaks of up to two orders of magnitude above background;a clear day–night cycle with more intensive activity at night;enhanced mixing rates;frequencies of 1–2 × 10−3 Hz, close to both the local buoyancy and shear frequencies, N/2π and S/2π, which vary slowly in time;high vertical coherence over at least 30-m scales; andabrupt vertical phase change (π/2 over <20 m).The abrupt vertical phase change is consistent with instabilities formed in stratified shear flows. Linear stability analysis applied to measured velocity and density profiles leads to predicted frequencies that match those of the observed oscillations. This correspondence suggests that the observed oscillation frequencies are set by the phase speed and wavelength of instabilities as opposed to the Doppler shifting of internal gravity waves with intrinsic frequency set by the local stratification N.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3