Eastern-Boundary Contribution to the Residual and Meridional Overturning Circulations

Author:

Cessi Paola1,Wolfe Christopher L.1,Ludka Bonnie C.1

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract A model of the thermocline linearized around a specified stratification and the barotropic linear wind-driven Stommel solution is constructed. The forcings are both mechanical (the surface wind stress) and thermodynamical (the surface buoyancy boundary condition). The effects of diapycnal diffusivity and of eddy fluxes of buoyancy, parameterized in terms of the large-scale buoyancy gradient, are included. The eddy fluxes of buoyancy are especially important near the boundaries where they mediate the transport in and out of the narrow ageostrophic down-/upwelling layers. The dynamics of these narrow layers can be replaced by effective boundary conditions on the geostrophically balanced flow. The effective boundary conditions state that the residual flow normal to the effective coast vanishes. The separate Eulerian and eddy-induced components may be nonzero. This formulation conserves the total mass and the total buoyancy while permitting an exchange between the Eulerian and eddy transport of buoyancy within the down-/upwelling layers. In turn, this exchange allows buoyancy gradients along all solid boundaries, including the eastern one. A special focus is on the buoyancy along the eastern and western walls since east–west buoyancy difference determines the meridional overturning circulation. The inclusion of advection of buoyancy by the barotropic flow allows a meaningful distinction between the meridional and the residual overturning circulations while retaining the simplicity of a linear model. The residual flow in both meridional and zonal directions reveals how the subsurface buoyancy distribution is established and, in particular, how the meridional buoyancy gradient is reversed at depth. In turn, the horizontal buoyancy gradient maintains stacked counterrotating cells in the meridional and residual overturning circulations. Quantitative scaling arguments are given for each of these cells, which show how the buoyancy forcing, the wind stress, and the diapycnal and eddy diffusivities, as well as the other imposed parameters, affect the strength of the overturn.

Publisher

American Meteorological Society

Subject

Oceanography

Reference31 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3