Estimated Seasonal Cycle of North Atlantic Eighteen Degree Water Volume

Author:

Forget Gaël1,Maze Guillaume1,Buckley Martha1,Marshall John1

Affiliation:

1. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Abstract The seasonal cycle in the volume and formation rate of Eighteen Degree Water (EDW) in the North Atlantic is quantified over the 3-yr period from 2004 to 2006. The EDW layer is defined as all waters that have a temperature between 17° and 19°C. The study is facilitated by a synthesis of various observations—principally Argo profiles of temperature and salinity, sea surface temperature, and altimetry—using a general circulation model as an interpolation tool. The winter increase in EDW volume is most pronounced in February, peaking at about 8.6 Svy, where 1 Svy ≈ 3.15 × 1013 m3 corresponding to a 1 Sv (Sv ≡ 106 m3 s−1) flow sustained for one year. This largely reflects winter EDW formation due to air–sea heat fluxes. Over the remainder of the year, newly created EDW is consumed by air–sea heat fluxes and ocean mixing, which roughly contribute ⅔ and ⅓, respectively. The authors estimate a net annual volume increase of 1.4 Svy, averaged over the 3-yr period. It is small compared to the amplitude of the seasonal cycle (8.6 Svy) and annual formation due to air–sea fluxes (4.6 Svy). The overall EDW layer volume thus appears to fluctuate around a stable point during the study period. An estimate of the full EDW volume budget is provided along with an uncertainty estimate of 1.8 Svy, and largely resolves apparent conflicts between previous estimates.

Publisher

American Meteorological Society

Subject

Oceanography

Reference21 articles.

1. Overview of the formulation and numerics of the MIT GCM.;Adcroft,2004

2. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm.;Fairall;J. Climate,2003

3. Mapping ocean observations in a dynamical framework: A 2004–06 ocean atlas.;Forget;J. Phys. Oceanogr.,2010

4. Isopycnal mixing in ocean circulation models.;Gent;J. Phys. Oceanogr.,1990

5. Mode waters.;Hanawa,2001

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3