Interannual Variations of Total Ozone at Northern Midlatitudes Correlated with Stratospheric EP Flux and Potential Vorticity

Author:

Hood L. L.1,Soukharev B. E.1

Affiliation:

1. Lunar and Planetary Laboratory, The University of Arizona, Tucson, Arizona

Abstract

Abstract At northern midlatitudes over the 1979–2002 time period, column ozone trends are observed to have maximum negative amplitudes in February and March. Here, the portion of the observed ozone interannual variability and trends during these months that can be attributed to two specific dynamical transport processes is estimated using correlative and regression methods. In approximate agreement with a recent independent study, 18%–25% of the observed maximum negative trend is estimated to be due to long-term changes in the diabatic (Brewer–Dobson) circulation driven by global-scale changes in planetary wave [Eliassen–Palm (EP) flux] forcing. In addition, 27%–31% of the observed maximum midlatitude trend during these months is estimated to be due to long-term changes in local nonlinear synoptic wave forcing as deduced from correlated interannual variations of zonal mean ozone and Ertel’s potential vorticity. Like long-term decreases in the Brewer–Dobson circulation, this trend component reflects an overall net increase in the polar vortex strength, which is associated with increased numbers of anticyclonic, poleward-breaking Rossby waves at northern midlatitudes. Together, these components can explain approximately 50% of the observed maximum negative column ozone trend and interannual variance at northern midlatitudes in February and March. The combined empirical model also approximately simulates a leveling off or slight increase in column ozone anomalies that has been observed for some months and latitudes since the mid-1990s.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3