Characteristics of African Easterly Waves Depicted by ECMWF Reanalyses for 1991–2000

Author:

Chen Tsing-Chang1

Affiliation:

1. Atmospheric Science Program, Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Abstract

Abstract Several interesting characteristics of African easterly waves (AEWs) were observed and investigated by previous studies: two separate propagation paths, genesis mechanisms, restriction of vertical development, and the interaction with the African easterly jet (AEJ). However, some aspects of these characteristics have been neglected: the contrast of the AEW population along the two propagation paths, the AEW genesis mechanism over the Saharan thermal low and the role played by the low-level North African circulation in this mechanism, the dynamical mechanism restricting the vertical development of AEWs, and the synoptic relationship and interaction between the AEJ and the AEWs along the two propagation paths. The ECMWF reanalyses for the 1991–2000 period supplemented with those of 1979 were analyzed to explore these AEW features. Major findings of this effort are the following: The population of AEWs along the propagation path north of the AEJ (AEWn) is approximately 2.5 times of that along the propagation path south of the AEJ (AEWs). The AEWn geneses primarily occur over the three convergent centers and the southwestward extension of the Saharan thermal low. Underneath the midtropospheric Saharan high, the baroclinic instability of a shallow, low static stability environment, which may be triggered by the intrusion of dry northerlies over central North Africa, leads to the AEW genesis. Continental-scale upward motion along the Saharan thermal low and the cyclonic-shear side of the AEJ maintains positive vortex stretching below the Saharan high and the western part of the Asian monsoon high. These two regions thus form a favorable environment for the development of AEWs within the near-surface troposphere along the Saharan thermal low and the midtroposphere south of the AEJ. The passage of AEWn (AEWs) across the coastal zone of West Africa is accompanied by a weak (strong) AEJ and weak (strong) Saharan high. The westward propagation and development/maintenance of the two types of AEWs are achieved through vorticity advection by the AEJ, which is the major AEW–AEJ interaction. These findings will facilitate the search for AEW dynamics and aid in assessing the impact of AEW activity on North African climate change.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3