Affiliation:
1. Department of Statistics, University of Washington, Seattle, Washington
Abstract
Abstract
Ensemble prediction systems typically show positive spread-error correlation, but they are subject to forecast bias and dispersion errors, and are therefore uncalibrated. This work proposes the use of ensemble model output statistics (EMOS), an easy-to-implement postprocessing technique that addresses both forecast bias and underdispersion and takes into account the spread-skill relationship. The technique is based on multiple linear regression and is akin to the superensemble approach that has traditionally been used for deterministic-style forecasts. The EMOS technique yields probabilistic forecasts that take the form of Gaussian predictive probability density functions (PDFs) for continuous weather variables and can be applied to gridded model output. The EMOS predictive mean is a bias-corrected weighted average of the ensemble member forecasts, with coefficients that can be interpreted in terms of the relative contributions of the member models to the ensemble, and provides a highly competitive deterministic-style forecast. The EMOS predictive variance is a linear function of the ensemble variance. For fitting the EMOS coefficients, the method of minimum continuous ranked probability score (CRPS) estimation is introduced. This technique finds the coefficient values that optimize the CRPS for the training data. The EMOS technique was applied to 48-h forecasts of sea level pressure and surface temperature over the North American Pacific Northwest in spring 2000, using the University of Washington mesoscale ensemble. When compared to the bias-corrected ensemble, deterministic-style EMOS forecasts of sea level pressure had root-mean-square error 9% less and mean absolute error 7% less. The EMOS predictive PDFs were sharp, and much better calibrated than the raw ensemble or the bias-corrected ensemble.
Publisher
American Meteorological Society
Cited by
779 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献