The Integrated Nowcasting through Comprehensive Analysis (INCA) System and Its Validation over the Eastern Alpine Region

Author:

Haiden T.1,Kann A.1,Wittmann C.1,Pistotnik G.1,Bica B.1,Gruber C.1

Affiliation:

1. Central Institute for Meteorology and Geodynamics, Vienna, Austria

Abstract

Abstract This paper presents the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which has been developed for use in mountainous terrain. Analysis and nowcasting fields include temperature, humidity, wind, precipitation amount, precipitation type, cloudiness, and global radiation. The analysis part of the system combines surface station data with remote sensing data in such a way that the observations at the station locations are reproduced, whereas the remote sensing data provide the spatial structure for the interpolation. The nowcasting part employs classical correlation-based motion vectors derived from previous consecutive analyses. In the case of precipitation the nowcast includes an intensity-dependent elevation effect. After 2–6 h of forecast time the nowcast is merged into an NWP forecast provided by a limited-area model, using a predefined temporal weighting function. Cross validation of the analysis and verification of the nowcast are performed. Analysis quality is high for temperature, but comparatively low for wind and precipitation, because of the limited representativeness of station data in mountainous terrain, which can be only partially compensated by the analysis algorithm. Significant added value of the system compared to the NWP forecast is found in the first few hours of the nowcast. At longer lead times the effects of the latest observations becomes small, but in the case of temperature the downscaling of the NWP forecast within the INCA system continues to provide some improvement compared to the direct NWP output.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3