The Contribution of Ex–Tropical Cyclone Gert (1999) toward the Weakening of a Midlatitude Cyclogenesis Event

Author:

Agustí-Panareda Anna1

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

Abstract Tropical Cyclone Gert (1999) experienced an extratropical transition while it merged with an extratropical cyclone upstream. The upstream extratropical cyclone had started to intensify before it merged with the transitioning tropical cyclone, and it continued intensifying afterward (12 hPa in 12 h, according to the Met Office analysis). The question addressed in this paper is the following: what was the impact of the transitioning tropical cyclone on this intensification of the upstream extratropical cyclone? Until now, in the literature, tropical cyclones that experience extratropical transition have been found to have either no impact or a positive impact on the development of extratropical cyclogenesis events. The positive impact involves either a triggering of the development of the extratropical cyclone or simply a contribution to its deepening. However, the case studied here proves to have a negative impact on the developing extratropical cyclone upstream by diminishing its intensification. Forecasts are performed with and without the tropical cyclone in the initial conditions. They show that when Gert is not present in the initial conditions, the peak intensity of the cyclone upstream occurs 9 h earlier and it is 10 hPa deeper than when Gert is present. Thus, Gert acts to weaken the development by contributing to the filling of the extratropical surface low upstream. Quasigeostropic (QG) diagnostics show that the negative impact on the extratropical development is linked to the fact that the transitioning tropical cyclone interacts with a warm front inducing a negative QG vertical velocity over the developing extratropical low upstream. This interpretation is consistent with other contrasting cases in which the transitioning tropical cyclone interacts with a cold front and induces a positive QG vertical velocity over the developing low upstream, thus enhancing its development. The results are also in agreement with idealized experiments in the literature that are aimed at studying the predictability of extratropical storms. These idealized experiments yielded similar results using synoptic-scale and mesoscale vortices as perturbations on warm and cold fronts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3