Penalized Maximal t Test for Detecting Undocumented Mean Change in Climate Data Series

Author:

Wang Xiaolan L.1,Wen Qiuzi H.2,Wu Yuehua2

Affiliation:

1. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada, and Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada

2. Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada

Abstract

Abstract In this paper, a penalized maximal t test (PMT) is proposed for detecting undocumented mean shifts in climate data series. PMT takes the relative position of each candidate changepoint into account, to diminish the effect of unequal sample sizes on the power of detection. Monte Carlo simulation studies are conducted to evaluate the performance of PMT, in comparison with the most popularly used method, the standard normal homogeneity test (SNHT). An application of the two methods to atmospheric pressure series recorded at a Canadian site is also presented. It is shown that the false-alarm rate of PMT is very close to the specified level of significance and is evenly distributed across all candidate changepoints, whereas that of SNHT can be up to 10 times the specified level for points near the ends of series and much lower for the middle points. In comparison with SNHT, therefore, PMT has higher power for detecting all changepoints that are not too close to the ends of series and lower power for detecting changepoints that are near the ends of series. On average, however, PMT has significantly higher power of detection. The smaller the shift magnitude Δ is relative to the noise standard deviation σ, the greater is the improvement of PMT over SNHT. The improvement in hit rate can be as much as 14%–25% for detecting small shifts (Δ < σ) regardless of time series length and up to 5% for detecting medium shifts (Δ = σ–1.5σ) in time series of length N < 100. For all detectable shift sizes, the largest improvement is always obtained when N < 100, which is of great practical importance, because most annual climate data series are of length N < 100.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

1. A homogeneity test applied to precipitation data.;Alexandersson;J. Climatol.,1986

2. Some methods for testing the homogeneity of rainfall records.;Buishand;J. Hydrol.,1982

3. Detection and correction of artificial shifts in climate.;Caussinus;Appl. Stat.,2004

4. Bayesian changepoint analysis of tropical cyclone activity: The central North Pacific case.;Chu;J. Climate,2004

5. Limit Theorems in Change-Point Analysis.;Csörgő,1997

Cited by 286 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3