Identification of marine sponges-symbiotic bacteria and their application in degrading polycyclic aromatic hydrocarbons

Author:

MARZUKI ISMAIL,KAMARUDDIN MUDYAWATI,Ahmad Rasheed

Abstract

Abstract. Marzuki I, Kamaruddin M, Ahmad R. 2021. Identification of marine sponges-symbiotic bacteria and their application in degrading polycyclic aromatic hydrocarbons. Biodiversitas 22: 1481-1488. Diverse and abundant microbial species that occupy marine sponges may make important contributions to host metabolism. Sponges are filter feeders and devour microorganisms from the seawater around them. Each microbe that endures the sponges’ digestive and immune responses are related symbiotically. Marine sponges symbiont bacteria can comprise as much as 40% of sponge tissue volume, and these are known to exhibit a great potential on polycyclic aromatic hydrocarbons (PAHs) degradation. However, the potential use of marine sponges symbiont bacteria is unexplored. Therefore, we designed and conducted a study to identify bacterial isolates obtained from sponges. For this, we collected sponges samples (Hyrtios erectus, Clathria (Thalysias) reinwardti), Niphates sp., and Callyspongia sp.) from the Spermonde islands in Indonesia. We successfully found eight bacterial isolates from four sponges, as molecular identification based on 16S rRNA approach revealed bacterial isolates of SpAB1, SpAB2, SpBB1, SpDB1, and SpDB2 from three sponges (Hyrtios erectus, Clathria (Thalysias) reinwardti), Niphates sp.). Interestingly, these were closely related to Pseudomonas, and a bacterial isolate from Callyspongia sp. (SpCB1) showed similarity to Bacillus. Bacillus and Pseudomonas bacteria isolated from hydrocarbon-contaminated sponges exhibited degradation of naphthalene and pyrene PAHs.

Publisher

UNS Solo

Subject

Plant Science,Molecular Biology,Animal Science and Zoology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3