Endophytic bacteria producing antibacterial against methicillinresistant Staphylococcus aureus (MRSA) in seagrass from Rote Ndao, East Nusa Tenggara, Indonesia

Author:

FITRI DIAN SAGITA,PANGASTUTI ARTINI,SUSILOWATI ARI,SUTARNO SUTARNO

Abstract

Fitri DS, Pangastuti A, Susilowati A, Sutarno. 2017. Endophytic bacteria producing antibacterial against methicillin-resistant Staphylococcus aureus (MRSA) in seagrass from Rote Ndao, East Nusa Tenggara, Indonesia. Biodiversitas 18: 733-740. Methicillinresistant Staphylococcus aureus (MRSA) are bacteria that resistant to the various type of antibiotics and yet cannot be handled comprehensively. The discovery of new antibiotic from endophytic bacteria in seagrass of Rote Island is an option to overcome the resistance. The aims of this research were to screen endophytic bacteria inhibit MRSA from seagrass, to determine the species of the endophytic bacteria and the genetic relationship. Isolation of endophytic bacteria has carried out by inoculating surface sterilization seagrass leaves on Marine Agar (MA) medium. Selection of potential endophytic bacteria-producing anti-MRSA has done using overlay method against MRSA, gram-positive Bacillus subtilis, and gram-negative Escherichia coli. Identification of the endophytic bacteria based on the sequence of 16S rRNA encoding gene. The results showed that there were eight isolates of endophytic bacteria which have antibacterial activity against MRSA of seagrass Enhalus acoroides, Thalassia hemprichii, and Cymodocea rotundata in the Litianak and Oeseli Beaches, Rote Ndao. The diameter of inhibition zone was between 0.65-18.27 mm with narrow spectrum with broad spectrum antibacterial activity. The eight potential endophytic bacteria identity were Bacillaceae E2M1, Bacillaceae E2M3, Bacillus E2M4, Bacillus E2M7, Bacillaceae E2M8, Pseudomonadaceae C1M7, Shewanellaceae C2M3, and Rhodobacteraceae T1M3. Most of the isolates can be said to be a new species as the percent similarity of 16S rRNA gene sequence was less than 95% and promising to produce new antibacterial compounds. Phylogenetic relationship showed some isolates clustering in different groups that present the diverse groups of endophytic bacteria were found.

Publisher

UNS Solo

Subject

Plant Science,Molecular Biology,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3