Local knowledge on landscape sustainable-hydrological management reduces soil CO2 emission, fire risk and biomass loss in West Kalimantan Peatland, Indonesia

Author:

ASTIANI DWI,TAHERZADEH MOHAMMAD J,GUSMAYANTI EVI,WIDIASTUTI TRI,BURHANUDDIN BURHANUDDIN

Abstract

Abstract. Astiani D, Taherzadeh MJ, Gusmayanti E, Widiastuti T, Burhanuddin. 2019. Local knowledge on landscape sustainable-hydrological management reduces soil CO2 emission, fire risk and biomass loss in West Kalimantan Peatland, Indonesia. Biodiversitas 20: 725-731.  Local knowledge in managing peatlands, especially in the area of peat hydrology, has been practiced through generations to manage peatlands for agriculture and small scale gardens. Farmers in West Kalimantan have developed the way to conserve water by making simple dams using soil or woody plants to hold water from the peat upstream areas on small channels or rivers. To reduce puddles during rain or tides, people make small trenches, so-called parit cacing in the middle of the larger channel. The trench cross-section size is ~30-40 cm2. This channel can maintain the peat water level to the extent of the depth of the channel. These channels, at the same time, are useful, for a clear, easy land ownership border for one farmer family land. The results of CO2 emissions assessment at various water levels on the peatland landscape demonstrate that the landscape which surrounded by the parit cacing trenches can maintain lower CO2 emissions compared to the one that has deeper water levels. The knowledge to develop this channel has also reduced the risk of peatland fire hazard and the amount of peat biomass loss on a fire event. An assessment on the effect of water level on the loss of peat biomass when burned, reduce 30-78% loss risks if compared to water table depth of 60-80cm, which is assumed as general practices on peatland recently. The practices of the knowledge on peatlands hydrology management can reduce the risk of peatland soil CO2 emission as well as loss of peat mass through decomposition and during peat fires.

Publisher

UNS Solo

Subject

Plant Science,Molecular Biology,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3