Crisis in Mexico

Author:

Corona AntonioORCID

Abstract

This paper analyzes the relationship between the Mexican President’s discourse on COVID-19 and the use of Twitter by state officials at the start of the pandemic, through content analysis and supervised machine learning. Analyzing all tweets by state-level agencies during the first 6 months of the pandemic, we found that accounts belonging to the ruling party tweeted consistently less about COVID, compared to the opposition. Furthermore, the social-distancing hashtags endorsed by the Health Department were underused by the party’s own officials. We hypothesized that the president’s skeptical discourse on COVID-19 had a chilling effect on party officials’ use of Twitter during this period. Two random forest machine learning models were trained using the president’s words as predictors not only of the officials’ political alignment, but also of the amount of COVID tweets they posted. The models proved reliable, and the words most significant for prediction are markedly indicative of populist rhetoric. This illustrates how populist discourse from heads of government can undermine communication between institutions and citizens.

Publisher

Coimbra University Press

Subject

Communication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3